Experimental Investigation of Micro Crack InitiationBased on Digital Image Correlation Method
1.School of Energy and Power Engineering,Beihang University,Beijing 100191,China;2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China;3.Chengdu Holy Industry & Commerce Corp. Ltd,Pengzhou 611936,China
[1] 陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社, 2002.
[2] Suresh S. 材料的疲劳:第2版[M]. 北京:国防工业出版社, 1993.
[3] Schijve J. Fatigue of Structures and Materials[M]. Netherlands: Springer, 2009.
[4] 魏振伟, 刘昌奎, 顾玉丽, 等. GH536高温合金焊接接头疲劳裂纹萌生与扩展原位试验研究[J]. 失效分析与预防, 2016, 11(6): 335-339.
[5] Ma X, Shi H J. On the Fatigue Small Crack Behaviors of Directionally Solidified Superalloy DZ4 by in Situ SEM Observations[J]. International Journal of Fatigue, 2010, 118-120(1): 91-98.
[6] Huang X, Yu H, Xu M, et al. Experimental Investigation on Microcrack Initiation Process in Nickel-Based Superalloy DAGH4169[J]. International Journal of Fatigue, 2012, 42(4):153-164.
[7] 邓国坚. 微尺度下疲劳小裂纹扩展特性的试验研究[D]. 上海:华东理工大学, 2015.
[8] Goto M, Knowles D M. Initiation and Propagation Behaviour of Microcracks in Ni-Base Superalloy Udimet 720 Li[J]. Engineering Fracture Mechanics, 1998, 60(1): 1-18.
[9] 吴 楠. 微观组织和初始缺陷对镍基合金GH4169疲劳裂纹萌生及扩展行为的影响[D]. 上海: 华东理工大学, 2016.
[10] 侯 方, 雷 冬, 龚兴龙. 结合数码显微镜的数字散斑相关方法精度分析及应用[J]. 实验力学, 2009, 24(4): 269-275.
[11] 侯 方. 镍基高温合金微观疲劳性能的实验研究[D]. 合肥:中国科学技术大学, 2009.
[12] 雷 冬, 龚 明, 侯 方, 等. 镍基高温合金材料疲劳微裂纹萌生和扩展的实验研究[C]. 河南:中国力学学会2009学术大会, 2009.
[13] Kujawińska M. Modern Optical Measurement Station for Micro-Materials and Micro-Elements Studies[J]. Sensors and Actuators A: Physical, 2002, 99(1): 144-153.
[14] Chu T C, Ranson W F, Sutton M A. Applications of Digital-Image-Correlation Techniques to Experimental Mechanics[J]. Experimental Mechanics, 1985, 25(3):232-244.
[15] Pan B, Qian K, Xie H, et al. Topical Review: Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review[J]. Measurement Science & Technology, 2009, 20(6): 152-154.
[16] 牟园伟, 陆 山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2):282-290.
[17] Mokhtarishirazabad M, Lopez-Crespo P, Moreno B, et al. Evaluation of Crack-Tip Fields from DIC Data: A Parametric Study[J]. International Journal of Fatigue, 2016, 89: 11-19.
[18] 潘 兵, 俞立平, 吴大方. 使用双远心镜头的高精度二维数字图像相关测量系统[J]. 光学学报, 2013, 33(4): 97-107.
[19] Berfield T A, Patel J K, Shimmin R G, et al. Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation[J]. Experimental Mechanics, 2007, 47(1): 51-62.
[20] 朱 奇, 郝文峰, 陈 雷, 等. 微尺度散斑制备方法研究及应用进展评价[J]. 实验力学, 2018, 33(1): 77-84.
[21] Wang H, Xie H M, Li Y, et al. Fabrication of Micro-scale Speckle Pattern and its Applications for Deformation Measurement[J]. Measurement Science & Technology, 2012, 23(3).
[22] 何广龙. 微尺度数字图像相关方法和技术研究[D]. 镇江:江苏大学, 2016.
[23] 潘 兵, 吴大方, 夏 勇. 数字图像相关方法中散斑图的质量评价研究[J]. 实验力学, 2010, 25(2): 120-129.
[24] Pan B, Lu Z, Xie H. Mean Intensity Gradient: An Effective Global Parameter for Quality Assessment of the Speckle Patterns Used in Digital Image Correlation[J]. Optics & Lasers in Engineering, 2010, 48(4): 469-477.
[25] Rabbolini S, Pataky G J, Sehitoglu H, et al. Fatigue Crack Growth in Haynes 230 Single Crystals: An Analysis with Digital Image Correlation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(5):583-596.
[26] Carrol J D. Relating Fatigue Crack Growth to Microstructure via Multiscale Digital Image Correlation[D]. USA: University of Illinois at Urbana-Champaign, 2011.